Temperature measurements near the contact line of an evaporating meniscus V-groove

نویسندگان

  • Christopher P. Migliaccio
  • Hemanth Dhavaleswarapu
  • Suresh V. Garimella
  • Hemanth K. Dhavaleswarapu
چکیده

Evaporation from a meniscus of heptane liquid in a V-groove geometry is experimentally investigated. A thin layer of titanium coated on the backside of the fused quartz groove is electrically heated to provide a constant heat flux. The temperature profile in the evaporating thin film region of the extended meniscus is measured using high-resolution infrared thermography and the temperature suppression in this region is obtained as a function of liquid feeding rate. The meniscus shape is captured using a goniometer. A temperature suppression of 0.2 K in the 150 lm region surrounding the contact line on each side indicates the efficacy of evaporation in the extended meniscus. At a given axial location, the fraction of total meniscus heat transfer which takes place in a 50 lm sub-region measured from the contact line is estimated by an approximate heat balance analysis to be 45% for the range of liquid feeding rates explored. 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microscale Temperature Measurements near the Contact Line of an Evaporating Thin Film in a V-Groove

Thin-film evaporation of heptane in a V-groove geometry is experimentally investigated. The groove is made of fused quartz, and electrical heating of a thin layer of titanium coated on the backside of the quartz substrate provides a constant heat flux. The effects of liquid feeding rate on the temperature suppression in the thin-film region and on the meniscus shape are explored. High resolutio...

متن کامل

Numerical Study of an Evaporating Meniscus on a Moving Heated Surface

The present study is performed to numerically analyze an evaporating meniscus bounded between the advancing and receding interfaces on a moving heated surface. The numerical scheme developed for analyzing interface motion during bubble growth in pool boiling has been applied. A column of liquid is placed between a nozzle outlet and a moving wall, and calculations are done in two dimensions with...

متن کامل

Evaporative Heat and Mass Transfer from the Free Surface of a Liquid Wicked into a Bed of Spheres

Evaporation of ethanol from square packed arrays of 3.95 mm diameter copper spheres in a transparent, enclosed chamber is investigated. The enclosure ensures that relatively saturated vapor conditions exist near the free surface. The desired heat flux is imposed on the copper substrate upon which the copper spheres are mounted, and the liquid level in the bed is maintained by wicking from a con...

متن کامل

Experimental investigation of evaporation from low-contact-angle sessile droplets.

Evaporating sessile drops remain pinned at the contact line during much of the evaporation process, and leave a ring of residue on the surface upon dryout. The intensive mass loss near the contact line causes solute particles to flow to the edge of the droplet and deposit at the contact line. The high vapor diffusion gradient and the low thermal resistance of the film near the contact line are ...

متن کامل

Microscale Temperature Measurements at the Triple Line of an Evaporating Thin Film

Thin-film evaporation from a meniscus in a confined space, which is the basis for many two-phase cooling devices, is experimentally investigated. The meniscus formed by heptane, a highly wetting liquid, on a heated, fused quartz substrate is studied. Microscale infrared temperature measurements performed near the thin-film region of the evaporating meniscus reveal the temperature suppression ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016